The Impact of Consumer Electronics on Home Electricity Use

Noah Horowitz
Natural Resources Defense Council (NRDC)
nhorowitz@nrdc.org

November, 2011

Energy Consumption of Major Household Appliances has Decreased Dramatically

While Energy Use of Consumer Electronics and Other Plug Loads Poised to Increase

Miscellaneous contains smaller electronics such as chargers, home audio equipment, game consoles, etc. Also contain non-electronics such as portable fans, irons, etc.

Electronics in Perspective: Worldwide

Source for Worldwide sales: http://venturebeat.com/2010/01/05/worldwide-consumer-electronics-market-expected-to-be-flat-in-2010/. All other stats: International Energy Agency. *Gadgets and Gigawatts* (2009).

TV Ecosystem – It's Not Just the TV that Matters

TV Trends – ESTAR helping drive improved efficiency

TV Power and Annual Energy Levels

	32"	42"
Energy Star 3	120W (226 kWh/yr)	208W (387 kWh/yr)
Energy Star 4	78W (149 kWh/yr)	115W (215 kWh/yr)
Energy Star 5	55W (107 kWh/yr)	81W (155 kWh/yr)

Computers in Transition

Comparison with Tablets Indicates Large Margin for Efficiency Improvements in Desktops and Notebooks

Based on product samples, not necessarily exact representation of market average

- Large differences in energy use reflect more than performance differences: desktops use less efficient components and system architectures
- Tablets demonstrate that computing devices of similar capabilities and prices can have radically lower power use

(1) iPad2, Energy Star 5 Category B desktop and notebook, 50% with Energy Star duty cycle, 50% with no power management, desktop includes 20-inch monitor, notebook includes monitor energy

Large Spread in Power Use Between Similar Models

Today's Computers

ENERGY STAR Desktop PCs 300 250 250 150 150 100 50 1 1.5 2 2.5 3 3.5 4 4.5 Processor Speed (GHz)

Includes Category A&B ENERGY STAR PCs as of March 1, 2011.

Today's Monitors

Includes ENERGY STAR and CNET (http://reviews.cnet.com/green-tech/monitor-comparison-chart/?tag=contentMain;contentAux) data as of March 1, 2011.

The Computer Ecosystem

- Most homes now have high speed internet and wireless, not an insignificant incremental load →
 - Modem: 5W @ 24/7
 - Router: 5 10 W @ 24/7
 - Total = 88 to 131 kWh/yr
- Need to make sure computer, monitors and printers go to low power sleep/standby mode when not in use.
- Computer USB port used to charge stuff, make sure doesn't prevent device from going to sleep.

Set Top Boxes (STBs)

- > 80% of US households subscribe to pay TV
- 160 million STBs installed
- Little to no difference in power use when "turned
- Category energy use increasing_{due to} growth of DVRs
- DVR STB may use more electricity/yr than the big screen TV its connected to
- DVR STB + regular STB = Annual electricity use of new refrigerator

STB Data LoggingExam ple

Motorola DCX3400 with Comcast Digital Cable

Source: Ecos/NRDC 2010

Nearly Two-Thirds of Annual U.S. Set-Top Box Energy Use Occurs When Viewers are Not Watching or Recording Content

RESULTS IN...

Electricity Consumption: 3 Power Plants (500 MW each)

Emissions:

5 Million Metric Tons CO2/year

Cost to Consumers:

\$1 Billion/year

RESULTS IN...

Electricity Consumption:

6 Power Plants (500 MW each)

Emissions:

11 Million Metric Tons CO₂/year

Cost to Consumers:

\$2 Billion/year

In Use = watching or recording a show

Not In Use = not watching or recording a show

Energy Use of Set-Top Boxes and Other Appliances

Recent Progress

- ESTAR Version 3 now live and making a difference. Around 40 complying models on the market.
- Seeing energy savings of around 30% compared to 2010 base case.
- Best DVRs are now around 22W as opposed to 30-35W.
- Standby nower use remains high typically only

Video Game Consoles

- > 40% of homes have a video game console (XBox 360, Play Station 2 or 3, or Wii)
- Each new generation of device results in dramatic increase in functionality and power use. (what will "PS4", XBox "720", or Wii U look like?)
- Current XBox 360 and PS3 have cut their on mode power use by roughly 50% (Now 80 90W, from 150- 200W when first introduced).

Remaining Opptys/Concerns

- Most consoles today_{still shi} p_{with auto} power down disabled. As such new XBox 360/PS3 that is left on will consume around 80W continuously, rather than < 1W. (IF ON 24/7 → 700 kWh/yr)
- Many internet connected Wii consoles stay in network standby which is 10W rather than 1W.
- Bring down power use needed to stream/play back video content (movies, TV shows, etc.)

XBox 360 and PS3 Require A Lot More Power to Play a Movie than Regular DVD Player

With increasing use of consoles to play movies (both disk-based and streaming), efficiency of console playback is becoming more critical

Beware of Network Standby! When Activated, it Can Be Responsible for 80% of Console Energy Use

Annual Energy Use - Wii with WiiConnect24(1)

- ➤ When activated, Nintendo Wii goes into Network Standby at 10W, rather than Off at 1W. This translates into 74 kWh of annual energy use when NOT using the console
- ➤ Better efficiency in networked standby mode is critical to game console energy savings
- (1) With CEA 2010 Study duty cycle

Other Trends to Track/Address

- Microsoft just announced that they will soon stream video content from 50 providers to Xbox 360.
- CONCERN unless consoles made more EE, will take around 70W to play this content (on top of the energy used by the existing STBs in the home.)
- Sales of internet connected TVs growing requires much less power to stream content.

Standby Stuff

- With exception of STBs, most CE products have a standby power level of around 1W.
- The key is making sure the device actually goes into standby when not in use (computer, video game console, surround sound system, etc.)
- What impact will increased networking of devices in the home have on standby energy use?:
 - Smart grid connected appliances
 - Home media server and wireless content transfer
 - Ability to program/access content remotely from smart phone

Acknowledgements

- Energy Solutions Alex Chase
- Ecos Consulting Gregg Hardy, Jeff Swofford
- NRDC Pierre Delforge

